The Two Forms of Fractional Relaxation of Distributed Order

نویسندگان

  • FRANCESCO MAINARDI
  • ANTONIO MURA
  • RUDOLF GORENFLO
  • MIRJANA STOJANOVIĆ
چکیده

The first-order differential equation of exponential relaxation can be generalized by using either the fractional derivative in the Riemann–Liouville (R-L) sense and in the Caputo (C) sense, both of a single order less than 1. The two forms turn out to be equivalent. When, however, we use fractional derivatives of distributed order (between zero and 1), the equivalence is lost, in particular on the asymptotic behaviour of the fundamental solution at small and large times. We give an outline of the theory providing the general form of the solution in terms of an integral of Laplace type over a positive measure depending on the orderdistribution. We consider in some detail two cases of fractional relaxation of distribution order: the doubleorder and the uniformly distributed order discussing the differences between the R-L and C approaches. For all the cases considered we give plots of the solutions for moderate and large times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations

In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.

متن کامل

SDO relaxation approach to fractional quadratic minimization with one quadratic constraint

In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...

متن کامل

Study on stability analysis of distributed order fractional differential equations with a new approach

The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...

متن کامل

Basic results on distributed order fractional hybrid differential equations with linear perturbations

In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...

متن کامل

Solving A Fractional Program with Second Order Cone Constraint

We consider a fractional program with both linear and quadratic equation in numerator and denominator  having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a  second order cone programming (SOCP)  problem.  For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006